Can Lessons from Data Science Help Journalism?

New York Times newsroom 1942. Source: Library of Congress http://hdl.loc.gov/loc.pnp/cph.3c12969

 

You might think journalism and data science don’t really go together, but on that, I differ. Below are some thoughts on the topic and lessons we can draw from data science on how to make journalism better and more effective in these times.

Why Lies Spread Faster than the Truth

With the increasing speed of information coming at us, how do we know what’s true and what’s not, or even worse – what’s fake?

Figuring out what’s true and false is tough, and then understanding what to do about it can be even tougher.  But we should recognize one aspect between lies and the truth.

Lies spread faster.  Here’s why.

The Advent of Analytics Engineering

Data Science has become an exploding field in recent years, and depending on whether you are focusing on machine learning, artificial intelligence, or citizen data science, the discipline of data science is creating very high expectations.

There is indeed much promise for data science, where predictive models and decision engines can target skin cancer in patient imagery, presciently recommend a new product that piques your interest, or power your self-driving car to evade a potential accident.

However, promise requires much effort for it to be realized. It takes a lot of work and brand new engineering disciplines that are not yet mature or even employed on a wide scale. As there is greater recognition of the value of data science, and the generation of data is increasing at exponential rates, this engineering effort is starting and will grow beyond its adolescence soon.

This is why we are at the advent of a new engineering discipline that can truly realize the promise of data science – a discipline that I call “analytics engineering”.

The Fundamentals of Data Science

 

Two of the biggest buzzwords in our industry are “big data” and “data science”. Big Data seems to have a lot of interest right now, but Data Science is fast becoming a very hot topic.

I think there’s room to really define the science of data science – what are those fundamentals that are needed to make data science truly a science we can build upon?

Below are my thoughts for an outline for such a set of fundamentals:

A Data Science Lesson from Richard Feynman

Richard Feynman

Richard Feynman

Richard Feynman is one of the greatest scientific minds, and what I love about him, aside from his brilliance, is his perspective on why we perform science.   I’ve been reading the compilation of short works of Feynman titled The Pleasure of Finding Things Out, and I recently came across a section that really hit home with me.

In the world of data science, much is made about the algorithms used to work with data, such as random forests or k-mean clustering.  However, I believe there is a missing component – one that deals the fundamentals underlying data science, and that is the real science of data science.

10 Things To Know When Hiring Data Scientists

I’ve been performing data science before there was a field called “data science“, so I’ve had the opportunity to work with and hire a lot of great people.  But if you’re trying to hire a data scientist, how do you know what to look for, and what should you consider in the interview process?

Data Science Word Cloud

I’ve been doing what is now called “data science” since the early 1990s and have helped to hire numerous scientists and engineers over the years.  The teams I’ve had the opportunity to work with are some of the best in the world, tackling some of the most challenging problems facing our country.  These folks are also some of the smartest people I’ve ever had the opportunity to work with.

That said, not everyone is a good fit, and the discipline of data science requires important key elements.  Hiring someone into your team is incredibly important to your business, especially if you’re a small startup or building a critical internal data science team; mistakes can be expensive in both time and money.  This can be even more intimidating if you don’t have the background or experience in hiring scientists, especially someone responsible for this new discipline of working with data.

The Best Way To Learn New Things

Science and business seem like two very different disciplines, but is the best approach to learning any different in these two fields?  These areas of life seem so unique, and the people in them can be quite varying (one with the nerdy pocket protector and the other dressed in the well-tailored suit).  However, both science and business require learning, and the best approach to learning in each is really the same.

Businessman-Nerd
The best approach to learning is generally through failure.  For example, Thomas Edison failed an astounding number of times before he invented a working lightbulb, and there are likely thousand of stories about how successes came as a result of many tries and many failures.

In many ways, this is really an application of the scientific method.  I’ve written a number of posts about Stephen Wolfram (such as using Wolfram|Alpha to look at your own social network, his views on big data, computing a theory of everything, and how he created his company).  In the effort to learn even more about how the world works, Wolfram has pushed scientific discovery to the next level, which he’s done with his book A New Kind of Science (NKS for short).

Beating Cancer and Favoritism with Data

Fortune-Startup RisingI read a couple of items in this month’s Fortune magazine that I thought it was worth passing along.

The first was a small article by Brian Dumaine about the work being done at Applied Proteomics to identify cancer before it develops.  At Applied Proteomics, they use mass spectroscopy to capture and catalog 360,000 different pieces of protein found in blood plasma, and then let supercomputers crunch on the data to identify anomalies associated with cancer.  The company has raised $57 million in venture capital and is backed by Microsoft co-founder Paul Allen.  You can read the first bit of the article here.

The second is from the Word Check callout, showing how access to information is making the word a better place:

wasa: Pronounced [wah-SUH]

(noun) Arabic slang:  A display of partiality toward a favored person or group without regard for their qualifications.  A system that drives much of life in the Middle East — from getting into a good school to landing a good job.

But on the Internet, there is no wasa.

– Adapted from Startup Rising: The Entrepreneurial Revolution Remaking the Middle East by Christopher M. Schroeder

8 Lessons from Nerd Culture

SupermanI found this set of business wisdoms in the August 2013 issue of Entrepreneur magazine.  While not perfect mantras by which to guide a business, I thought there were pretty fun.

=================

Chris Hardwick didn’t rely on just his nerdy instincts in founding his company; he also took inspiration from his heroes.  Super-power your business with these lessons from some epic nerd properties.